- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Sankaranarayanan, Sriram (1)
-
Tasdighi_Kalat, Shadi (1)
-
Trivedi, Ashutosh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
Hillston, Jane (1)
-
Soudjiani, Sadegh (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hillston, Jane; Soudjiani, Sadegh (Ed.)We study the problem of inferring the discount factor of an agent optimizing a discounted reward objective in a finite state Markov Decision Process (MDP). Discounted reward objectives are common in sequential optimization, reinforcement learning, and algorithmic game theory. The discount factor is an important parameter used in formulating the discounted reward. It captures the “time value” of the reward- i.e., how much reward at hand would equal a promised reward at a future time. Knowing an agent’s discount factor can provide valuable insights into their decision-making, and help predict their preferences in previously unseen environments. However, pinpointing the exact value of the discount factor used by the agent is a challenging problem. Ad-hoc guesses are often incorrect. This paper focuses on the problem of computing the range of possible discount factors for a rational agent given their policy. A naive solution to this problem can be quite expensive. A classic result by Smallwood shows that the interval [0, 1) of possible discount factor can be partitioned into finitely many sub-intervals, such that the optimal policy remains the same for each such sub-interval. Furthermore, optimal policies for neighboring sub-intervals differ for a single state. We show how Smallwood’s result can be exploited to search for discount factor intervals for which a given policy is optimal by reducing it to polynomial root isolation. We extend the result to situations where the policy is suboptimal, but with a value function that is close to optimal. We develop numerical approaches to solve the discount factor elicitation problem and demonstrate the effectiveness of our algorithms through some case studies.more » « less
An official website of the United States government

Full Text Available